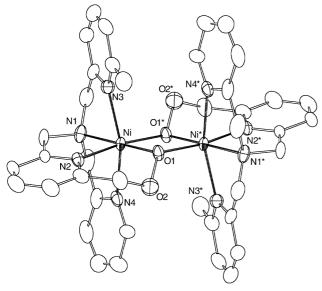
Zuschriften

Reaction Intermediates

A Bis(μ-alkylperoxo)dinickel(II) Complex as a Reaction Intermediate for the Oxidation of the Methyl Groups of the Me₂-tpa Ligand to Carboxylate and Alkoxide Ligands**

Jaeheung Cho, Hideki Furutachi, Shuhei Fujinami, and Masatatsu Suzuki*

Aliphatic C-H bond functionalization by various metalactive oxygen species M_m/O_n such as superoxo, peroxo, highvalent oxo-metal complexes, etc. is of great importance for understanding the reaction mechanisms of metalloenzymes and utilizing metal complexes as oxidation catalysts.[1-4] In some cases, aliphatic C-H bond functionalization starts from hydrogen abstraction, and the resulting alkyl radicals undergo a variety of subsequent reactions.^[5-7] For example, a bis(µalkylperoxo)dicopper(II) complex was suggested as an intermediate in the reaction of a copper(I) complex, [Cu(iPr₃tacn)]^{+,[8]} with O₂ in the presence of 2,4-tert-butylphenol.^[5] Very recently, an alkylperoxopalladium(II) complex was also reported which was produced from the reaction of a hydroperoxopalladium(II) complex in the presence of a copper(II) complex as a catalyst. [6] Although various transition-metalalkylperoxo complexes are known, [9] the alkylperoxo complexes generated as reaction intermediates are limited. Previously, we found that the reaction of [Ni₂(OH)₂(Me₃tpa)₂]²⁺ with H₂O₂ generates a bis(μ-oxo)dinickel(III) complex, [Ni₂(O)₂(Me₃-tpa)₂]²⁺, and a bis(μ-superoxo)dinickel(II) complex, $[Ni_2(O_2)_2(Me_3-tpa)_2]^{2+.[10]}$ The decomposition of $[Ni_2(O)_2(Me_3-tpa)_2]^{2+}$ and $[Ni_2(O_2)_2(Me_3-tpa)_2]^{2+}$ under O_2 caused the oxidative conversion of a methyl group of the Me₃-tpa ligand to give carboxylate and alkoxide ligands. Furthermore, the carboxylate ligand has been shown to be not derived from the autoxidation of the alkoxide ligand, and some other reaction pathways have been suggested. Herein, we report the formation, structural characterization, and reactivity of a novel bis(µ-alkylperoxo)dinickel(II) complex as a reaction intermediate in the oxidative conversion of the methyl groups of the Me2-tpa ligand into carboxylate and alkoxide ligands; this nickel complex is the first example of a structurally characterized dinuclear transition-metal complex with bridging alkylperoxides, although a crystal structure of a main-group-metal complex with a bis(μ-alkylperoxo)Zn₂^{II} core was reported very recently.[11]


^[*] J. Cho, H. Furutachi, Prof. S. Fujinami, Prof. M. Suzuki Department of Chemistry, Faculty of Science Kanazawa University Kakuma-machi, Kanazawa 920-1192 (Japan) Fax: (+81) 76-264-5742 E-mail: suzuki@cacheibm.s.kanazawa-u.ac.jp

^[**] Me₂-tpa = bis[(6-methyl-2-pyridyl)methyl][(2-pyridyl)methyl]amine. Financial support of this research by the Ministry of Education, Science, and Culture (Grant-in-Aid for Scientific Research to M.S.) is gratefully acknowledged.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

The reaction of a solution of the $bis(\mu-hydroxo)dinickel(II)$ complex [Ni₂(OH)₂(Me₂-tpa)₂]²⁺ (1)^[12] in acetonitrile with excess hydrogen peroxide at -40°C showed a rapid color change from sky blue to dark green. The positive ESI-TOF mass spectrum of the solution diluted with acetone at -78 °C suggested the formation of a monomeric superoxonickel(II) species, [13] $[\{Ni(O_2)(Me_2-tpa)\}^+]$ (2; m/z 408.1078, 100%), a bis(µ-alkylperoxo)dinickel(II) species, [{Ni₂(Me₁-tpa- $\text{CH}_2\text{OO})_2 l^{2+}$] (3; see below), and a (μ -superoxo)(μ -alkylper- $[{Ni_2(O_2)(Me_2-tpa)(Me_1-tpa$ oxo)dinickel(11) species, CH₂OO)²⁺ together with some unidentified minor species (see Supporting Information). The formation of such a monomeric superoxonickel(II) species 2 was also observed for the Me₃-tpa system in solution by ESI-TOF MS measurements, although the isolated species is a dimeric bis(μ superoxo)Ni₂^{II}. [10] The formation of **2** implies the presence of a bis(μ-oxo)dinickel(III) species that can oxidize excess hydrogen peroxide into superoxide to generate 2, as found for the Me₃-tpa system. [10] For the Me₃-tpa system, the superoxo species was shown to regenerate a bis(μ-oxo)dinickel(III) species by the disproportionation of the superoxo ligands, with evolution of dioxygen. The resulting bis(µoxo)dinickel(III) species is responsible for the abstraction of a hydrogen atom from the methyl group. The ESI-TOF mass spectrum revealed that 2 is unstable, and warming the solution at -20°C resulted in decomposition to generate a bis(µ-alkylperoxo)dinickel(II) complex, [Ni₂(Me₁-tpa- $CH_2OO)_2 X_2 (X = BPh_4 (3-(BPh_4)_2) \text{ or } ClO_4 (3-(ClO_4)_2)).$

The X-ray diffraction study of 3-(BPh₄)₂ revealed that the complex has a Ni₂(μ -OOR)₂ core in which one of the methyl groups of each Me₂-tpa ligand is oxidized to a ligand-based peroxide and the resulting two peroxides link two nickel(II) ions (Figure 1). The peroxides seem to be stabilized by the formation of the six-membered chelate rings (Ni1-O1-O2-C7-

Figure 1. ORTEP diagram (50% probability) of the $[Ni_2(Me_1-tpa-CH_2OO)_2]^{2+}$ cation in **3**-(BPh₄)₂. Hydrogen atoms are omitted for clarity. Selected bond lengths $[\mathring{A}]$ and angles $[^{\circ}]$: Ni1-O1 1.993(2), Ni1-O1* 2.048(2), Ni1-N1 2.065(3), Ni1-N2 2.031(3), Ni1-N3 2.166(3), Ni1-N4 2.198(3), O1-O2 1.458(4), O1-Ni1-O1* 83.72(10), Ni1-O1-O2 108.3(2).

C6-N2) and bridges. The O1–O2 bond length of 1.458(4) Å is in the range of those of transition-metal-alkylperoxo complexes (1.36–1.52 Å).^[4,6,9] Complex **3** is a novel example of a structurally characterized reaction intermediate isolated during the oxidation reaction. The ESI-TOF mass spectrum of **3** in MeCN showed a signal at m/z 407.1008 (100%), indicating that the dimeric structure remains intact (see Supporting Information).

The oxygen source of the alkylperoxo groups in 3 was identified by isotope-labeling experiments (see Supporting Information). The ESI-TOF mass spectrum of a sample prepared by the reaction of 1 with H₂¹⁸O₂ while bubbling ¹⁶O₂ through the solution revealed the formation of only 16Oalkylperoxo species, whereas the reaction under N₂ (i.e. in the absence of ¹⁶O₂) gave ¹⁸O-alkylperoxo species. In the latter reaction, ¹⁸O₂ may be generated by the disproportionation of the ¹⁸O-superoxo species and/or the disproportionation of H₂¹⁸O₂. Furthermore, only the ¹⁶O-alkylperoxo species was obtained by the reaction with $H_2^{16}O_2$ in the presence of $H_2^{18}O$ under N₂. These results clearly indicate that the two oxygen atoms of the alkylperoxo ligand come from exogenous dioxygen. Although the detailed mechanism of formation of 3 is not clear at present, the reaction may involve the abstraction of a hydrogen atom from a methyl group by a bis(μ-oxo)dinickel(III) species as found for [Ni₂(O)₂(Me₃tpa)₂]^{2+[10]} (although not identified in this study) to generate a ligand-based radical (Me₁-tpa-CH₂·), which reacts with exogenous dioxygen to afford a peroxyl radical species (Me₁tpa-CH₂OO[•]). The resulting peroxyl radical species seems to be converted into the alkylperoxo species through unidentified reaction pathway(s). Further studies are necessary for clarifying this point.

A solid sample of 3 is relatively stable at room temperature, whereas the ESI-TOF mass spectrum in a dry DMF/ MeCN mixture showed that decomposition occurs within 1 hour at room temperature, and 3 is converted into a ligandbased carboxylato complex [{Ni(Me₁-tpa-COO)(dmf)}⁺] (4·dmf; m/z 478.1380, 100%) and a ligand-based alkoxo complex $[{Ni_2(Me_1-tpa-CH_2O)_2}^{2+}]$ (5; m/z 391.1125, 20%) together with some unidentified species (see Supporting Information).^[14] The carboxylato complex **4** was isolated as [Ni(Me₁-tpa-COO)(H₂O)]ClO₄ (4-H₂O·ClO₄) (see Experimental Section and Supporting Information). The formation of both Me₁-tpa-COO⁻ and Me₁-tpa-CH₂OH was also confirmed by a ligand-recovery experiment after the decomposition of 3-(ClO₄)₂·H₂O in DMF under Ar; the yields of Me₁tpa-COO⁻ and Me₁-tpa-CH₂OH are approximately 62 % and 37%, respectively (see Supporting Information). It was also found that the decomposition of 3 containing Me₁-tpa- $CH_2^{16}O^{16}O^-$ in the presence of $H_2^{18}O$ under N_2 gave a mixture of ¹⁶O-¹⁶O, ¹⁶O-¹⁸O, and ¹⁸O-¹⁸O carboxylato species 4 (see Supporting Information), and the same is true for the formation of the alkoxo complex 5. Decomposition under ¹⁸O₂ in the presence of H₂¹⁶O, however, gave only ¹⁶O-¹⁶O carboxylato species. These results indicate that there is some reactive species that reacts with water molecules during the conversion of 3 into 4 and 5. One possible reaction pathway for the formation of Me₁-tpa-COO⁻ and Me₁-tpa-CH₂OH involves the following steps: (Scheme 1): 1) the peroxide

Zuschriften

Scheme 1. Possible pathway for the formation of carboxylate and alkoxide ligands.

ligand can be converted into a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, 2) the oxygen atom of the aldehyde can be exchanged through the formation of an acetal, 3) disproportionation of the aldehyde may give a carboxylate and an alkoxide through the Cannizzaro reaction and/or the aldehyde can be oxidized by an additional alkylperoxo ligand. Insertion of oxygen into the alkoxo ligand of 5 from water strongly supports the disproportionation of the aldehyde by the Cannizzaro reaction. The presence of a larger amount of the carboxylate ligand than the alkoxide ligand probably suggests that some other side reaction(s) take(s) place at the same time. As mentioned before, such oxidation of a methyl group into carboxylate has also been observed for the decomposition of [Ni₂(O)₂(Me₃tpa)₂]²⁺ and $[Ni_2(O_2)_2(Me_3-tpa)_2]^{2+}$ under O_2 ,^[10] during which ligand-based alkylperoxo species such as 3 seem to be common intermediates for the conversion into the corresponding carboxylato complexes. Further studies into a detailed conversion mechanism are in progress.

In conclusion, we have succeeded in the isolation and structural characterization of bis(μ -alkylperoxo)dinickel(II) complex **3** derived from the reaction of the bis(μ -hydroxo)dinickel(II) complex **1** with H_2O_2 and O_2 through the formation of the Me_1 -tpa- CH_2 · and Me_1 -tpa- CH_2OO · radicals. Subsequent decomposition of **3** afforded the carboxylato complex **4** and the alkoxo complex **5**. Thus, such an alkylperoxo species seems to be a common intermediate for the oxidation of a methyl group of the supporting ligand into carboxylate and alkoxide ligands in the present type of nickel complexes.

Experimental Section

1-(ClO₄)₂·3 H₂O: nBu_4NOH in methanol (1M; 175 μ L, 0.5 mmol) was added to a stirred mixture of Ni(ClO₄)₂·6 H₂O (183 mg, 0.5 mmol) and Me₂-tpa (159 mg, 0.5 mmol) in methanol (20 mL) in a Schlenk tube under N₂. The resulting solution was allowed to stand overnight at

0 °C to afford **1** as sky blue crystals. FTIR (KBr): \bar{v} = 1604, 1577, 1484, 1457, 1353, 1105, 786, 624 cm⁻¹; UV/Vis (DMF): $\lambda_{\rm max}$ (ε) = 610 nm (23); ESI-TOF MS (MeCN): m/z (%): 393.1167 (100) [{Ni₂(OH)₂(Me₂-tpa)₂]²⁺]; elemental analysis (%) calcd for C₄₀H₅₂N₈Cl₂Ni₂O₁₃: C 46.14, H 5.03, N 10.76; found: C 46.20, H 4.70, N 10.82. X-ray crystallographically suitable crystals were obtained by the addition of NaBPh₄ (see Supporting Information).

3-(BPh₄)₂: Aqueous H₂O₂ (30 %; 550 μL, 5 mmol) was added to a rapidly stirred solution of **1** (52 mg, 0.05 mmol) in MeCN (20 mL) at -40 °C under O₂. The resulting solution was allowed to stand overnight, to which a solution of NaBPh₄ (68 mg, 0.2 mmol) in acetonitrile (2 mL) was added. The resulting solution was left for 1 day at -20 °C to give **3**-(BPh₄)₂ as brown crystals (35 mg, 48 %) suitable for X-ray crystallography. FTIR (KBr): \bar{v} = 1604, 1577, 1353, 1162, 705, 613 cm⁻¹; UV/Vis (reflectance): λ_{max} = ~398 (shoulder), 545, ~630 (shoulder), 780, 1035 nm; ESI-TOF MS (DMF/MeCN): m/z (%): 407.1023 (100) [{Ni₂(Me₁-tpa-CH₂OO)₂}²⁺] and 480.1537 (20) [{Ni(Me₁-tpa-CH₂OO)}⁺ + DMF]; elemental analysis (%) calcd for $C_{88}H_{82}N_8O_4B_2Ni_2$: C 72.66, H 5.68, N 7.70; found: C 72.84, H 5.73, N 7.88

4-H₂O·ClO₄: An excess amount of H₂O₂ (30%; 550 μL, 5 mmol) was added to a rapidly stirred suspension of **1** (52 mg, 0.05 mmol) in EtOH at room temperature. The resulting dark green suspension was allowed to stand for 1 day, without stirring, to give a blue solution, from which blue crystals of **4** were obtained. FTIR (KBr): \vec{v} = 1635, 1606, 1577, 1457, 1444, 1392, 1284, 1103, 887, 775, 624 cm⁻¹; UV/Vis (DMF): λ_{max} (ε) = 570 (15), 790 (14), 942 nm (32); ESI-TOF MS (DMF/MeCN): m/z (%): 478.1376 (100) [{Ni(Me₁-tpa-COO)}+ + DMF]; elemental analysis (%) calcd for C₂₀H₂₁N₄ClNiO₇: C 45.88, H 4.04, N 10.70; found: C 45.42, H 4.03, N 10.74.

Crystal data for **3**-(BPh₄)₂: $C_{88}H_{82}N_8B_2N_{12}O_4$, triclinic, $P\bar{1}$, Z=1, a=10.234(1), b=14.009(2), c=14.080(1) Å, $\alpha=68.931(10)$, $\beta=73.92(1)$, $\gamma=84.43(1)^\circ$, V=1810.0(3) Å³, $\rho_{\rm calcd}=1.334~{\rm g\,cm^{-1}}$, $0.25\times0.18\times0.08~{\rm mm}$, $T=-150~{\rm C}$, $F_{000}=764.00$, $\mu({\rm Mo_{K\alpha}})=5.80~{\rm cm^{-1}}$, Rigaku Mercury CCD diffractometer, ${\rm Mo_{K\alpha}}$ ($\lambda=0.71070$ Å), ω scan, 14484 measured, 5723 independent reflections ($I>3.00\sigma(I)$), 469 parameters; structure solution with direct methods^[15] and successive Fourier technique. [16] All calculations were performed with the teXsan [17] crystallographic software package of the Molecular Structure Corporation. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed

geometrically. They were included, but not refined against |F|, to yield R (Rw) = 0.0562 (0.0786); largest residual electron densities 1.44/-0.71 (GOF=1.387). CCDC-226793 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).

Received: December 30, 2003 [Z53637]

Keywords: nickel · oxidation · peroxides · reaction mechanisms

- J. M. Mayer, Biomimetic Oxidations Catalyzed by Transition Metal Complexes (Ed.: B. Meunier), Imperial College Press, London, 2000, pp. 1-44.
- [2] a) L. Que, Jr, R. Y. N. Ho, Chem. Rev. 1996, 96, 2607; b) L.
 Que, Jr, W. B. Tolman, Angew. Chem. 2002, 114, 1160; Angew.
 Chem. Int. Ed. 2002, 41, 1114; c) J.-U. Rohde, M. R. Bukowski,
 L. Que, Jr, Curr. Opin. Chem. Biol. 2003, 7, 674.
- [3] a) E. I. Solomon, T. C. Brunold, M. I. Davis, J. N. Kemsley, S.-K. Lee, N. Lehnert, F. Neese, A. J. Skulan, Y.-S. Yang, J. Zhou, Chem. Rev. 2000, 100, 235; b) J. J. Girerd, F. Banse, A. J. Simaan, Struct. Bonding (Berlin) 2000, 97, 145.
- [4] a) S. Hikichi, M. Akita, Y. Moro-oka, Coord. Chem. Rev. 2000, 198, 61; b) M. Akita, S. Hikichi, Bull. Chem. Soc. Jpn. 2002, 75, 1657.
- [5] J. A. Halfen, V. G. Young, Jr, W. B. Tolman, *Inorg. Chem.* 1998, 37, 210.
- [6] M. Kujime, S. Hikichi, M. Akita, Chem. Lett. 2003, 32, 486.
- [7] K. Haas, H. Dialer, H. Piotrowski, J. Schapp, W. Beck, Angew. Chem. 2002, 114, 1969; Angew. Chem. Int. Ed. 2002, 41, 1879.
- [8] iPr₃-tacn = 1,4,7-triisopropyl-1,4,7-triazacyclononane; Me₂-tpa = bis[(6-methyl-2-pyridyl)methyl][(2-pyridyl)methyl]amine; Me₃-tpa = tris[(6-methyl-2-pyridyl)methyl]amine.
- a) N. Kitajima, T. Katayama, K. Fujisawa, Y. Iwata, Y. Morooka, J. Am. Chem. Soc. 1993, 115, 7872; b) H. Komatsuzaki, N. Sakamoto, M. Satoh, S. Hikichi, M. Akita, Y. Moro-oka, Inorg. Chem. 1998, 37, 6554; c) S. Hikichi, H. Komatsuzaki, M. Akita, Y. Moro-oka, J. Am. Chem. Soc. 1998, 120, 4699; d) M. Bonchio, S. Calloni, F. D. Furia, G. Licini, G. Modena, S. Moro, W. A. Nugent, J. Am. Chem. Soc. 1997, 119, 6935; e) F. A. Chavez, P. K. Mascharak, Acc. Chem. Res, 2000, 33, 539; e) P. Chen, K. Fujisawa, E. I. Solomon, J. Am. Chem. Soc. 2000, 122, 10177.
- [10] K. Shiren, S. Ogo, S. Fujinami, H. Hayashi, M. Suzuki, A. Uehara, Y. Watanabe, Y. Moro-oka, J. Am. Chem. Soc. 2000, 122, 254.
- [11] J. Lewinski, Z. Ochal, E. Bojarski, E. Tratkiewicz, I. Justyniak, J. Lipkowski, Angew. Chem. 2003, 115, 4791; Angew. Chem. Int. Ed. 2003, 42, 4643.
- [12] The crystal data and ORTEP diagram for 1 are given in the Supporting Information.
- [13] Although there is a possibility of a peroxonickel(III) species as an alternative formulation, it is not clear which is correct at present.
- [14] Surprisingly, it was found that the thermal decomposition of 3 was very slow in the presence of a small amount of water (>2 days).
- [15] SIR92: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27, 435.
- [16] DIRDIF94: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, The DIRDIF-94 program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1994.
- [17] teXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985 & 1999.